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NF-«B is an inducible transcription factor that regulates the
expression of various cellular genes involved in immune and
inflammatory responsés.The epoxyquinoid natural product
cycloepoxydon 1) (Figure 1) was isolated from fermentations
of a deuteromycete str&iand shown to inhibit activation of NF-
«B. Due to our interest in the synthesis of epoxyquinoid natural
products’® we have targeted cycloepoxydon for a total synthesis
effort. Herein, we report the first total synthesis and absolute
stereochemical assignment of-)tcycloepoxydon utilizing a
tartrate-mediated nucleophilic epoxidation to introduce initial
stereocenters.

A retrosynthetic analysis for the synthesis of cycloepoxydon
is depicted in Figure 1 and is based on a “stereochemically linear
strategy in which initial stereogenic centers associated with the
epoxide in conjunction with substrate control are used to establish
all remaining stereocenters. Key steps involve pyran formation
through endacyclization of epoxy alcohol precursa2 and
reagent-controlled asymmetric nucleophilic epoxidatimfrquino-
ne monoketaB.

The synthesis was initiated by hypervalent iodine oxid&tion
of 4% to afford dimethoxyketab (Scheme 1). Transketalization
of 5 with 2,2-diethyl-1,3-propanediol afforded 1,3-dioxaBge
which was found to be an improved substrate for nucleophilic
epoxidation relative tdb. Using 3, a number of methods for
asymmetric nucleophilic epoxidation were evaluatatle ob-
tained promising results using modifications of the tartrate-
modified’ nucleophilic epoxidation system reported by Jackson
and co-workers$. Although reactions did not proceed using
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aReagents (a) PhI(OAc), MeOH, rt, 30 min, 84%; (b) 2,2-diethyl-
1,3-propanediol, PPTS, benzene,’@) 80 min, 89%; (cyBuLi, L-DIPT,
PhCOOH, PhCH, rt, 24 h, 88% conversion (68% ee); (d) NaHMDS,
L-DIPT, PRCOOH, PhCH (20% THF),—50 °C, 30 h, 97%, 96% ee;
(e) (B)-tributyl-1-pentenyl-stannane, RibaCHCls, CICH,CHCI, 60°C,
40 h, 81%; (f) DIBAL-H, THF,—78 °C, 15 min, 88%; (g) 48% HF,
CH;CN, 0°C, 5 min, 92%.

n-BuLi—(L) -diisopropy! tartrate (DIPT) employin@uOOH? we
found trityl hydroperoxide (PYCOOH) to be an effective peroxide
source. Optimization of reaction conditions [RIOOH (5 equiv),
n-BuLi (2.7 equiv), ()-DIPT (1.0 equiv), toluene, rt] provided
monoepoxidé (68% ee). Interestingly, using NaHMDS, reactions
using ()-DIPT were found to proceed at50 °C and to afford
the oppositeenantiomei7.1° Use of KHMDS afforded moderate
conversion, but resulted in low ee{0%). Production o7 (97%
yield, 96% ee) from substraBewas optimized using NaHMDS
(L)-DIPT [PhsCOOH (6.4 equiv), NaHMDS (5.2 equiv),¢DIPT
(1.6 equiv), 0.1 M in toluene;-50 °C, 30 h]. The absolute
stereochemistry of was assigned by correlation with compounds
produced by diastereoselective epoxidation of a chiral quinone
monoketal (see Supporting Information for detaifs) Stille
coupling? of 7 with (E)-tributyl-1-pentenyl-stannafgafforded

8 which was reduced with Dibal-H in THFP*to afford anti-
epoxy alcohob. Treatment 0B with HF—CH;CN effected acetal
hydrolysi$ to provide epoxyquinol0.

A mechanistic proposal for tartate-mediated nucleophilic ep-
oxidations is shown in Figure 2. The asymmetric induction and
counterion dependency may be explained by preferential forma-
tion of complexesA (Li) or B (Na) in which 2 equiv of either
lithium or sodium tritylperoxide form bowl-shaped chelates with
either five- or six-membered ring hydrogen-bonded tartrate
conformers® The resulting bowl-shaped complexes may then
promote formation of two different epoxide enantiomers by
hydrogen-bond activation of the dienone and face-selective
conjugate addition of a peroxide ani&nin both cases, the
substrate binds in an orientation such that the bulky Br and
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aReagents: (an-CPBA, CHCly, rt, 4 h, 85%; (b) 48% HF, CECN,
rt, 2 h,1 (53%), 12 (35%).

protected hydroxymethyl group are positioned in the convex face
of the chelated complex. For compléx this positioning of the
substrate results in addition of the peroxide anion frormottiace
of the dienone, while addition to th&face is observed foB.%”
Preferred formation oB in the case of the sodium counterion
may result from a combination of energetic preference for five-
membered ring hydrogen bondiigoupled with the increased
atomic radius of sodium favoring a six-membered metal chelate.
Completion of the synthesis of cycloepoxydon required regio-
and diastereoselective epoxidation of epoxyquib@l(Scheme
2). Although electrophilic epoxidations of conjugated dienone
substrates generally proviged-epoxy enones’ the hydroxyl-
directing® group effects ofLO were unclear at the outset. In the
event, treatment af0 with m-CPBA cleanly affordeg,6-epoxy
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Figure 3.

enonell The stereochemistry dfl was tentatively assigned
using conformational analy$fawvhich showed minimum energies
for s-trans conformers of0 (cf. Scheme 2, inset), indicating that
the directed epoxidation should proceed to afford the diastereomer
shown. Thes-trans conformation of0was also confirmed using
NOE experiments (15% NOE between &hd H). Final synthesis

of (—)-cycloepoxydon was achieved by tandem deprotection and
cyclization by treatment of 1 with HF/CH;CN, which provided
endoeepoxide opening product—()-cycloepoxydonl and exo
epoxide opening produd® (“iso-cycloepoxydon”) in 53 and 35%
yields, respectively* The relative stereochemistries band12
were further confirmed by single X-ray crystal structure anaRgfsis.
Synthetic1 was confirmed to be identical to data reported for
natural ()-cycloepoxydof® by *H and 3C NMR and

[adp (—139, ¢ = 1.0, CDC}L:CD;0OD 95:5).

As shown in Figure 3a, 50M (—)-1 inhibited tumor necrosis
factor (TNF)-induced NFB DNA binding in mouse 3T3 cells.
Furthermore, £)-1 blocked degradation ofxBa, a required
upstream event in the activation of MB- (Figure 3b). The
enantiomer {)-1 also inhibited TNF-induced NkB DNA
binding and degradation okBo. (Figure 3, a and b).

In summary, the first total synthesis and absolute stereochemical
assignment of the NkB inhibitor (—)-cycloepoxydon has been
achieved employing a tartrate-mediated asymmetric nucleophilic
epoxidation of a quinone monoketal. The enantioselectivity in
this epoxidation system has been rationalized by the formation
of hydrogen-bonded chelates of tartrate and hydroperoxide anion.
Further studies on epoxyquinoids and mechanistic studies regard-
ing the tartrate-mediated epoxidation of electron-deficient olefins
are in progress.
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